Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Boris Shivachev, ${ }^{\text {a }}$ Rosica
Petrova ${ }^{\mathrm{a} *}$ and Emilia Naydenova ${ }^{\text {b }}$

${ }^{\text {a }}$ Bulgarian Academy of Sciences, CL of Mineralogy and Crystallography, Acad G. Bonchev Str. build. 107, 1113 Sofia, Bulgaria, and ${ }^{\mathbf{b}}$ University of Chemical Technology and Metallurgy, Department of Organic Chemistry, "KI. Ohridski" blvd. 8, 1756 Sofia, Bulgaria

Correspondence e-mail: rosica.pn@clmc.bas.bg

Key indicators

Single-crystal X-ray study
$T=290 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.062$
$w R$ factor $=0.168$
Data-to-parameter ratio $=22.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3'-Aminocyclohexanespiro-5'-hydantoinphenylboronic acid (1/1)

In the crystal structure of the title compound [systematic name: 3-amino-1,3-diazaspiro[4.5]decane-2,4-dione-phenylboronic acid (1/1)], $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{BO}_{2}$, molecules are held together by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and by an $\mathrm{N}-\mathrm{H} \cdots \pi$ interaction.

Comment

Cycloalkanespirohydantoins are the subjects of extensive investigation due to their biological properties (Somsak et al., 2005). Boronic acids, possessing a $-\mathrm{B}(\mathrm{OH})_{2}$ functional group, have been used in areas such as molecular recognition, boron neutron capture therapy (BNCT) agents, inhibitors of proteases, sensors for carbohydrates and reagents in Suzuki cross-coupling reactions, etc. (Yang et al., 2003). The title compound, (I), was obtained as a side product in attempts to link phenylboronic acid (PBA) and 3^{\prime}-aminocyclohexane-spiro-5'-hydantoin [SHN; systematic name: 1^{\prime}-aminocyclo-hexanespiro- 4^{\prime}-imidazole- $2^{\prime}, 5^{\prime}\left(3^{\prime} \mathrm{H}, 4^{\prime} \mathrm{H}\right)$-dione]. It follows an effort to interact SHN and boric $\operatorname{acid} \mathrm{B}(\mathrm{OH})_{3}$, which gave a second polymorph of SHN (Shivachev et al., 2005). In both cases, $\mathrm{B}(\mathrm{OH})_{3}$ and PBA, we expected that the $-\mathrm{NH}_{2}$ functional group of the SHN would be the reaction center, but the expected $\mathrm{B}-\mathrm{N}$ interaction could not be achieved. Instead, SHN and PBA crystallized in a molecular complex, (I) (Fig. 1).

(I)

Structural parameters of the SHN and PBA molecules are comparable with those reported earlier (Shivachev et al., 2005; Rettig \& Trotter, 1977). The PBA hydroxyl groups are in a syn position similar to the PBA-4,4'-bipirydine complex (Pedireddi \& SeethaLekshmi, 2004). The phenyl and hydantoin rings are essentially planar, with r.m.s. deviations of 0.004 (6) and 0.026 (4) A \AA, respectively; the angle between their mean planes is $22.23(13)^{\circ}$. The cyclohexyl ring adopts a chair conformation.

The hydantoin and $-\mathrm{B}(\mathrm{OH})_{2}$ units are largely responsible for the observed hydrogen bonding in the crystal structure (Table 2). Hydrogen bonding between SHN and PBA results in the formation of an SHA and PBA (1/1) unit. Two adjacent

Figure 1
The molecular structure and the atom-numbering scheme of (I), showing 50% probability displacement ellipsoids.

Figure 2
A view of the molecular packing in (I). Hydrogen bonds are represented by dotted lines. Symmetry codes (i), (ii) and (iii) are as given in Table 2.
units are linked through an $\mathrm{N} 21-\mathrm{H} 21 \cdots \mathrm{O} 22^{\mathrm{ii}}$ hydrogen bond (symmetry code as in Table 2), generating an SHA-PBA (2/2) unit, the main structural motif observed in (I); the hydrogen bonds form a centrosymmetric hydrogen-bonded ring with graph-set $R_{2}^{2}(8)$. The SHA-PBA (2/2) units are stacked along the a axis through an $\mathrm{N} 24-\mathrm{H} N 4 A \cdots \mathrm{O}^{1}$ hydrogen bond (symmetry code as in Table 2). The crystal packing is additionally stabilized by weak $\mathrm{N}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions, producing a pseudo-layer parallel to (011) (Fig. 2).

Experimental

3^{\prime}-Aminocyclohexanespiro- 5^{\prime}-hydantoin was prepared according to Naydenova et al. (2002) and phenylboronic acid was obtained from Acros. The title compound, (I), was obtained by slow evaporation of a 50% ethanol-water solution (20 ml) of $\mathrm{SHN}(0.18 \mathrm{~g})$ and PBA $(0.12 \mathrm{~g})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{BO}_{2} \\
& M_{r}=305.14 \\
& \text { Triclinic, } P \overline{1} \\
& a=6.0430(10) \AA \\
& b=12.0940(11) \AA \\
& c=12.3011(12) \AA \\
& \alpha=62.514(7)^{\circ} \\
& \beta=89.291(9)^{\circ}
\end{aligned}
$$

$$
\gamma=80.182(8)^{\circ}
$$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
4971 measured reflections
4568 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.062$
$w R\left(F^{2}\right)=0.168$
$S=1.03$
4568 reflections
201 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

C1-B	$1.564(3)$	C25-N21	$1.462(2)$
C22-O22	$1.222(2)$	B-O2	$1.352(3)$
C22-N23	$1.398(3)$	B-O1	$1.363(3)$
C24-O24	$1.201(2)$	N23-N24	$1.408(2)$
C24-N23	$1.375(3)$		
O22-C22-N21	$128.3(2)$	O2-B-C1	$118.6(2)$
N21-C22-N23	$106.73(17)$	O1-B-C1	$118.4(2)$
O24-C24-C25	$127.33(19)$	C24-N23-N24	$125.17(16)$
N23-C24-C25	$106.97(17)$		

Table 2
Hydrogen-bond geometry ($\AA,^{\circ}$).
$C g 1$ is the centroid of the phenyl ring of PBA.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 O \cdots \mathrm{O} 22$	0.82	2.00	$2.778(2)$	158
$\mathrm{O} 2-\mathrm{H} 2 O \cdots \mathrm{~N} 24$	0.82	2.09	$2.897(2)$	167
$\mathrm{~N} 24-\mathrm{H} N 4 A \cdots \mathrm{O} 1^{\text {i }}$	0.96	2.18	$3.120(3)$	165
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{O} 22^{\text {ii }}$	0.86	2.20	$3.037(2)$	166
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 24^{\text {iii }}$	0.93	2.55	$3.222(3)$	130
$\mathrm{~N} 24-\mathrm{H} N 4 B \cdots \mathrm{Cg}^{\text {iv }}$	0.94	2.51	$3.346(3)$	147

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1,-y,-z+1$; (iii) $-x,-y+1,-z$; (iv) $-x+1,-y+1,-z$.

The hydroxy and amino H atoms were located in a difference map and their positional parameters were fixed, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ and $1.2 U_{\text {eq }}(\mathrm{N})$. Other H atoms were placed in idealized positions (cyclohexyl $\mathrm{C}-\mathrm{H}=0.97 \AA$, aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=$ $0.86 \AA$) and were constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and MERCURY (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

This work was supported by the Bulgarian National Fund of Scientific Research Contract BYX 01.05.

organic papers

References

Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Naydenova, E., Pencheva, N., Popova, J., Stoyanov, N., Lazarova, M. \& Aleksiev, B. (2002). Il Farm., 57, 189-194.

Pedireddi, V. R. \& SeethaLekshmi, N. (2004). Tetrahedron Lett. 45, 19031906.

Rettig, S. J. \& Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Shivachev, B., Petrova, R. \& Naydenova, E. (2005). Acta Cryst. C61, o524o526.
Somsak, L., Nagy, V., Hadady, Z., Felfoldi, N., Docsa, T. \& Gergely, P. (2005). Front. Med. Chem. 2, 253-272.
Yang, W., Gao, X. \& Wang, B. (2003). Med. Res. Rev. 23, 346-368.

[^0]: © 2006 International Union of Crystallography All rights reserved

